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Abstract. Theorem proving can be a very useful formal method. How-
ever it currently takes a lot of time and study to learn how to use a
theorem prover, and proving even apparently simple theorems can be
tedious. Theorem proving, and its benefits in software and hardware de-
velopment, should be accepted more readily and widely if new users can
do larger proofs of more complete models earlier in their training and
with less work.

We present some generally applicable tools which we found helpful in
formally verifying a secure web server. The first is a program to check
goals for common mistakes arising indirectly from type inference. We
also give tactics, or proof advancing routines, to simplify goals and han-
dle assumptions. Finally we give tactics which prove goals by selecting
assumptions to establish the goal or find a contradiction. These are an-
other step to making theorem proving easier, increasing productive, and
reducing unnecessary complication.

1 Introduction

Although proving theorems with mechanized support can be useful in many in-
dustrial developments, using a theorem prover can take a great deal of expertise.
Many people consider theorem proving to be unrealistic because of the time to
learn how to do proofs and the tedium of proofs. However more powerful tactics
would allow users to “work at a high enough level to make the proof process
practical” [3].

Unfortunately powerful tactics tend to be slow. In fact, Gédel’s theorem
assures us there is a limit to the power of automatic tactics [5, 6]. However as
computers have gotten faster, it makes sense to automate more and more theorem
proving, even using heuristics which may be time-consuming or not guaranteed
to work. MESON_TAC [4] is an example. HOL traditionally has concentrated on
efficient “building block” tactics rather than strong tactics as, say, PVS [7] or
Isabelle [8].

We describe general tactics and a program we developed while verifying a
secure web server [1]. Section 2 presents a small program to help analyze why a
rewrite may fail on a particular goal. Section 3 gives several tactics to simplify
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goals. The last set of tactics, in Sect. 4, attempt to prove goals by grouping
assumptions for other conversions. (Early versions of these sections are in [1].)
Finally we report our use of these tactics and our conclusions in Sect. 6.

2 A Program to Analyze Rewrite Failures

Our first aid to theorem proving is a small program to analyze rewrite failures.
One may make mistakes in assigning types or may misenter names, especially
when developing specifications or formalizations. These errors may be especially
frustrating when a rewrite fails for no apparent reason. We wrote a routine in
SML to help analyze these situations.

WHY_NOT() examines the current, or top, goal and reports possible subtleties
which may be preventing it from being proved. It searches for and reports the
following situations.

1. Variables or constants with the same name, but different types.

2. Variables or constants with the same type and similar names. That is, pos-
sible typographical errors.

3. A variable and a constant with the same name and type.

4. Variables whose names are valid constants for that common types.

Such subtle differences are hard to spot and have wasted a lot of users’
time finding them. Since types in HOL are often inferred, identifiers with the
same name, but different types, are rare. But because HOL typically does not
print types, the user may have a hard time finding the problem when it does
occur. Also with the type inference, it is not unheard—of to mistype a variable or
constant and not notice the problem for some time. For example, one researcher
typed a goal similar to the following.

(empty_q = done) A (—done A started = —emtpy_q)

Boolean types were inferred for all variables. It took several frustrating hours
trying to prove the goal before realizing that empty_q had been mistyped as
emtpy_q.

Even more difficult to find is if a constant and a variable have the same name
and type. There is printed indication that something is a constant instead of a
variable. Finally it is possible to create a numeric variable named 42 or a string
variable named "k". Again there is no way to distinguish these from constants
except using the predicates is_const or is_var.

The implementation is straight forward. First all atoms (variables or con-
stants) are extracted from the top goal and assumption list. Numeric constants,
short string constants, and constants whose names are common operators, such
as V or +, are ignored. The “type” check reports atoms with the same name,
but different types. The “spelling” check reports atoms which identical types
and similar names. Names are similar if the initial character is the same and the
rest differs by a single character replacement, deletion, or insertion or a single



transposition. We require the initial characters to match to avoid reporting pairs
like xSize and ySize. Names shorter than three characters are ignored, too, to
reduce false reports. The “kind” check reports atoms with the same name and
type where one is a constant and the other is a variable. Finally list of atoms is
checked for variables which are numerals, strings, or common operators.

The following is a contrived, small example. The intent is to set a goal to
prove x + 2 4+ abc = abc+ 1+ y + 1 given x = y A abc > 5. However abc
is mistyped as abe. More seriously since = has lower precedence than A, the
hypothesis is associated as x = (y A (abc > 5)), so x and y are type boolean
instead of natural numbers. The errors are pretty obvious here, but these kinds
of errors are much harder to catch when the predicates are big or there are
lots of assumptions. The goal looks like it could be proved by rewriting and
arithmetic analysis (ASM_REWRITE TAC [] and CONV_TAC ARITH_CONV), but the
“errors” prevent it.

— set_goal([x =y Aabc > 5],
x+2+abc=abe+1+y+1);

val it =
Initial goal:
X+2+abc=abe+1+y+1

x=yAabc>5
— WHY_NOT();

The name y appears as both :num and :bool
The name x appears as both :num and :bool
Possible typo: abe and abc have the same type and similar names

Types in HOL are prefaced with a colon (:num and :bool). The user prompt is
a dash and space (— ). We give more details about HOL in App. A.

3 Tactics to Simplify Goals

Often the theorem to be proved is so complex it is hard for the novice to know
where to start. These complex goals may arise in discharging obligations of
theorems, so it may not even be immediately clear what the theorem means.
This section gives tactics we have found helpful to simplify goals and take small,
but significant, steps toward proving them. The tactics may even prove the goal.

3.1 General Simplification

Proofs in axiomatic semantics tend to carry conjunctions of many conditions.
Inference rules often involve one extended condition implying another where



most of the conditions can be trivially satisfied. So there are often goals similar
toaAbAcAD=aAbAcAE.

Sometimes a goal can be proved just by stripping quantifiers and implications,
then rewriting with assumptions. We combine these steps into one tactic which
we call STRIP_THEN REWRITE_TAC. It is simply

val STRIP_THEN_REWRITE_TAC =
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [];

This may prove the goal or leave any number of subgoals. It never fails, but
since it does general rewriting, it may not terminate. It has always terminated
in practice. We give an example in Sect. 3.4.

Even when this doesn’t prove the goal, it usually clarifies the goal by reducing
it to a number of simpler subgoals. When there is a problem with the proof, for
instance, missing an assumption, this disentangles what needs to be proved. If
some tactic would be helpful, say expanding a definition, this can be a diagnostic
aid by showing what needs to be proved and the conditions or assumptions. One
can “back up” or undo the invocation, apply the necessary tactic, and proceed.

3.2 Move Quantifiers Outward

Complex inference rules may leave deeply buried quantifiers in the goal. It can be
hard to even determine the scope of quantification. LIFT_QUANT TAC combines all
available conversions to move universal and existential quantifiers as far outward
as possible. There universal quantifiers can be stripped and existential quanti-
fiers can have witnesses provided in one step, rather than encountering them at
different, odd times in the proof. Here is the definition.

val LIFT_QUANT_TAC =
CONV_TAC (REDEPTH_CONV (

AND_EXISTS_CONV ORELSEC AND_FORALL_CONV ORELSEC
OR_EXISTS_CONV ORELSEC OR_FORALL_CONV ORELSEC
LEFT_AND_EXISTS_CONV ORELSEC LEFT_AND_FORALL_CONV ORELSEC
LEFT_IMP_EXISTS_CONV ORELSEC LEFT_IMP_FORALL_CONV ORELSEC
LEFT_OR_EXISTS_CONV ORELSEC LEFT_OR_FORALL_CONV ORELSEC
RIGHT _AND_EXISTS_CONV ORELSEC RIGHT_AND_FORALL_CONV ORELSEC
RIGHT_IMP_EXISTS_CONV ORELSEC RIGHT_IMP_FORALL_CONV ORELSEC
RIGHT_OR_EXISTS_CONV ORELSEC RIGHT_OR_FORALL_CONV));

This tactic never fails. We have used it after undischarging all assumptions
to simplify all of them at once. See Sections 3.3 for an example.

3.3 Undischarge a Selected Assumption

Handling assumptions can be difficult, especially if one is trying to write a
reusable proof. Proofs are less sensitive to change if assumptions are selected
by a predicate or filter rather than by exact match or position. (A program to
generate filters from an assumption list is given in [2].) FILTER_UNDISCH.TAC
undischarges an assumption which matches an arbitrary predicate.



val FILTER_UNDISCH_TAC fp =
let fun hfp t = fp (concl t) handle _ => false
in
ASSUM_LIST (fn thil =>
UNDISCH_TAC ((concl o hd) (filter hfp thi)))
end;

This raises an exception if no assumption matches. The user supplies a term
predicate to the tactic. For instance, the following undischarges the first as-
sumption where the right hand side (#rhs) of an equality (dest_eq) is 0, that
is, ... = 0. (Term delimiters are --¢ and ‘-- in HOL.)

e (FILTER_UNDISCH_TAC (fn t => (#rhs o dest_eq) t = (--‘0‘--)));

The following example comes from a proof of information integrity. The filter
function looks for an assumption which is universally quantified.

preFSS inode (getFile SYSpileSystem’ inode)

Vinode.
(inode = inode0f (deref "FP))V
preFSS inode (getFile SYS_FileSystem’ inode)
—(inode = inode0f (deref "FP))

— e (FILTER UNDISCH_ TAC (fn t => is_forall t));

1 subgoal:
(Vinode.
(inode = inode0f (deref "FP))V
preFSS inode (getFile SYS_FileSystem’ inode)) =
preFSS inode (getFile SYS_FileSystem’ inode)

—(inode = inode0f (deref "FP))

The following tactic proves the goal.

e (LIFT_QUANT_TAC THEN EXISTS_TAC (--‘inode:num‘--) THEN
ASM_REWRITE_TAC [1);

3.4 Undischarge All Assumptions

The tactic UNDISCH_ALL _TAC undischarges all assumptions. It is helpful when one
needs to manipulate all the assumptions at once. Here is the definition.

val UNDISCH_ALL_TAC =
REPEAT (FIRST_ASSUM (fn thm => UNDISCH_TAC (concl thm)));



This tactic leaves the original goal, but with all assumptions undischarged.
The following extended example comes from the proof of confidentiality of a
call to fprintf(). We are proving that the precondition (from the previous
statement’s postcondition) implies the required precondition for fprintf (). This
example also shows the use of LIFT_QUANT_TAC and STRIP_THEN REWRITE_TAC.

nonConfidential (getFile SYS_FileSystem’ SYS_stdout)

FP = "FP
—(inode0f (deref FP) = SYS_stdout)
Vinode.(inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem inode)
C_Resultl6 >0
Vinode.(—(inode = inode0f (deref FP))V
(dprev.((inode = SYS_stdout) = nonConfidential prev)A
(appendFile (printfSpec "%s %s %s %s %d 7 vargs)
prev = getFile SYS_FileSystem' inode)))A
((inode = inode0f (deref FP))V
((inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem’ inode)))
inode = SYS_stdout

— e (UNDISCH_ALL_TAC);

1 subgoal:
(FP = "FP) = —(inode0f (deref FP)= SYS_stdout)=>
(Vinode.(inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem inode)) =
C_Result9 > 0 =
(Vinode.(—(inode = inode0f (deref FP))V
(prev.((inode = SYS_stdout) => nonConfidential prev)A
(appendFile (printfSpec "%s %s %s %s %d ” vargs)
prev = getFile SYS_FileSystem' inode)))A
((inode = inode0f (deref FP))V
((inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem' imnode)))) =
(inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem’ SYS_stdout)

— e (LIFT_QUANT_TAC);

1 subgoal:

Jinode’ inode”.

Vprev.(FP = "FP) = —(inode0f (deref FP) = SYS_stdout) =
((inode’ = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem inode’)) =



C_Result9 > 0 =

(—(inode” = inode0f (deref FP))V

((inode” = SYS_stdout) => nonConfidential prev)A

(appendFile (printfSpec "%s %s %s %s %d ” vargs)
prev = getFile SYS_FileSystem’ inode’’))A

((inode” = inode0f (deref FP))V

((inode” = SYS_stdout) =

nonConfidential (getFile SYS_FileSystem’ inode’))) =

(inode = SYS_stdout) =

nonConfidential (getFile SYS_FileSystem’ SYS_stdout)

3.5 An Arithmetic Tactic

While trying to prove theorems about array accesses, we came across goals which
appeared easy, but took quite a bit of work. HOL has a number of good, basic
tactics for arithmetic, but we could not find any general tactics.

DEPTH_ARITH TAC simplifies as many arithmetic expressions as possible. This
may prove the goal, but even if it doesn’t, it eliminates some subexpressions so
the user can concentrate on the parts which are not proved automatically. The
implementation is as follows.

val DEPTH_ARITH_TAC = REDUCE_TAC THEN
CONV_TAC (ONCE_DEPTH_CONV
(ARITH_CONV ORELSEC NEGATE_CONV ARITH_CONV)) THEN
ONCE_REWRITE_TAC [1;

The following example is ripped from a proof that a piece of code finds the
maximum in an array. (Some conjuncts were removed to make the example more
readable.) Since n is modeled as a natural number, DEPTH_ARITH_TAC eliminates
the 0 < n clauses.

(j < arszA
(Vno<nAn<j=
max > CA_IDX(CA(CA_FN ar)arSz)n))A
j > arSz =
(Vn.0 <nAn < CA_SZ ar = max > CA_IDX ar n)

— e (DEPTH_ARITH TAC);

1 subgoal:
(j < arszA
(Vn.n < j = max > CA_IDX(CA(CA_FN ar)arSz)n))A
j > arSz =
(Vn.n < CA_SZ ar => max > CA_IDX ar n)

DEPTH_ARITH TAC is somewhat inefficient since for every expression, it tries
to prove that the expression is true with ARITH_CONV, then if that fails, that it
is false with NEGATE _CONV ARITH_CONV.



4 Tactics to Prove Goals Using Assumptions

Many times goals can be proved by instantiating assumptions or finding contra-
dictions among assumptions. Since it may be difficult to work with assumptions
in HOL [2], we find it helpful for a program to try combinations of assump-
tions. The three tactics in this section provide a general way to automatically
manipulate assumptions to prove a goal. The first two tactics, ESTAB_TAC and
INCONSIST_TAC are somewhat specific but share the same mechanism. The last
one, SOLVE_TAC, builds on the first two for a more general tactic.

4.1 Establish a Term From the Assumptions

ESTAB_TAC adds the term operand as an assumption if it is provable from the
assumptions. The core is a utility, establish, which returns a theorem of the
form a; A ... A a, = tm. If establish can prove an appropriate theorem,
ESTAB_TAC uses it to add the term. This tactic fails if the term cannot be added.

Given a term and list of assumptions, establish tries different combinations
of assumptions to prove the term. It tries ARITH_CONV and TAUT_CONV to prove
the resulting theorem. For efficiency, establish tries to prove the term from
each assumption, then pairs of assumptions, then triples. It only tries pairs and
triples of assumptions if they share free variables.

Suppose you have the following goal.

j>o0

j 2> arSz

Vnn< j=>max>f n
max = 0

arSz > 0

P ar = arSz

Some inspection shows that we could establish j > 0 from j > arSz and arSz >
0. The following tactic proves the above goal.

e (ESTAB_TAC j > 0);

Without ESTAB_TAC the proving tactic is considerable longer, more sensitive to
changes, and less clear.

e(IMP_RES_TAC (prove(j > arSzAarSz > 0A j < arSz = j > 0, ARITH_TAC)));

4.2 Find an Inconsistency in the Assumptions

INCONSIST_TAC tries to prove a goal by finding an inconsistency in the assump-
tions. It fails if it cannot prove the goal.

The implementation is to try to establish F (false) (see ESTAB_TAC for details),
then prove the goal since false implies anything (using CONTR_TAC). If it cannot



establish F, it adds assumptions which follow from equalities (e.g., a = b) and
other assumptions until it finds a matching inequality (e.g., ~(a = b)), which is
an inconsistency. The idea and implementation of this second approach is due
to Robert Beers (beers@lal.cs.byu.edu).

Consider the following goal. Inspection suggests a proof by contradiction
using the assumptions n < j and j = 0 since n and j are natural numbers.
INCONSIST_TAC proves this goal.

someFunction n =0

n<j
0<nmn
j=o0

4.3 Prove Several General Ways

The tactic SOLVE_TAC heavily uses ESTAB_TAC and INCONSIST_TAC to solve a goal.
It tries a series of approaches and specialized tactics to prove the goal. We chose
the approaches from situations which arose in proving software properties. The
different ways are:

1. Establish the goal from the assumptions.

2. Prove an inconsistency in the assumptions.

3. If the goal is a = b, establish equalities to unify a and b.

4. If an assumption is a = b, establish a and the unifiers for b and the goal.

It fails if it cannot prove the goal.
SOLVE_TAC proves the following goals automatically.

Pd

a=>Pc
c =

nonConfidential (getFile SYS_FileSystem SYS_stdout)

inode = SYS_stdout
Vinode.(inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem inode)

Because of their modular construction, these tactics can easily be improved.
For instance, a version of SOLVE_TAC could take user’s conversions, in the spirit of
variations on REWRITE_TAC. Also SOLVE_TAC can be extended to handle a broader
class of goals and assumptions and could memoize its attempts to unify. The
establish routine could be more selective about which groups of assumptions
to try and also do more preprocessing.



5 Experience

Our verification of a secure web server [1], consists of a total of about 720 tac-
tic invocations in about 2,600 lines of tactics and comments. (tacl THEN tac2
counts as two invocations.) About 17% of the invocations are STRIP_THEN_
REWRITE_TAC, and 6% are our other new tactics; details are in Table 1.

Tactic Number of uses
STRIP.THEN_REWRITE_TAC 120
SOLVE_TAC 29
FILTER_UNDISCH_TAC 10
UNDISCH_ALL_TAC 5
LIFT_QUANT_TAC 2

Table 1. Uses of tactics

Although efficiency was not the goal, these tools are quick. On an HP 9000
the largest goals in our verification, which are over two hundred printed lines,
took under two seconds for WHY_NOT() to analyze. DEPTH_ARITH TAC took less
than eight seconds on the largest goals. The example in Sect. 3.4 with invocations
of SOLVE_TAC takes about 2.5 seconds.

Sources are available at the following URL. ESTAB_TAC and INCONSIST_TAC
are in establish.sml, and SOLVE_ TAC isin solveTac.sml. The file whynot.sml
contains WHY_NOT(). The rest of the tactics are in utilities.sml.

http://hissa.ncsl.nist.gov/~black /Source/

6 Conclusions

We have presented several generally applicable theorem proving tools. The tools
include a program to analyze goals for problems which may not be caught be-
cause of HOL’s type inference, tactics to simplify goals, and tactics to automat-
ically pick out assumptions to advance a proof.

Arguably none of these tools is a breakthrough, but the group of them au-
tomates many tedious parts of proofs. They also provide a framework for in-
cremental work to make incremental improvements in more automated proofs.
These tools help to make theorem proving a little easier for new or casual users,
reduce the amount of learning needed to get results, and handle details so the
user can do proofs at a slightly higher level.
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A HOL Syntax and Conventions

The following shows how a goal is displayed.
d4.P4d

aAklear'V "qq
Vinode.(inode = SYS_stdout) =
nonConfidential (getFile SYS_FileSystem inode)

The goal is printed above the underscore line, and all hypotheses are printed
below it. Types are by default not displayed, however the user can turn on type
printing.

Unbound variables are assumed to be universally quantified. Names may
include underscores (_) and primes (’). Antiquotation or program (SML) variable
interpolation is introduced by a caret ().

Function application is implied (no parentheses are needed), and functions
may be curried. For instance, getFile SYS_FileSystem inode means the func-
tion getFile applied to arguments SYS_FileSystem and inode.

This article was processed using the IATEX macro package with LLNCS style



